Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

(-)-Dimenthyl malonate

Gregory S. Coumbarides, Jason Eames,* Majid Motevalli and Yonas Yohannes

Department of Chemistry, Queen Mary, University of London, Mile End Road, London E1 4NS, England
Correspondence e-mail: j.eames@qmul.ac.uk
Received 4 October 2001
Accepted 12 November 2001
Online 16 January 2002
The title compound, bis(2-isopropyl-5-methylcyclohex-1-yl) malonate, $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{O}_{4}$, crystallizes in the monoclinic space group $P 2_{1}$. In the crystal, the molecule is not C_{2} symmetric.

Comment

A large number of substituted malonic acid derivatives are known (Kanters \& Kroon, 1972). Some attention has been focused on related keto (Adhikesavalu \& Venkatesan, 1983) and aldehyde derivatives (Lundgren \& Aurivillius, 1964), but little attention has been paid to the corresponding malonate ester derivatives. We were originally interested in the conformational preference of simple 1,3-dicarbonylcontaining molecules. To this aim, we synthesized the title $C_{2}{ }^{-}$ symmetric dimenthyl malonate, (III), as our model compound. We chose enantiopure (-)-menthol, (I), as our ester scaffold, as this would lead directly to enantiopure C_{2}-symmetric (III) without contamination resulting from the formation of other stereoisomers. Addition of commercially available malonyl dichloride, (II), to a stirred solution of natural (-)-menthol and triethylamine in dichloromethane gave the required (-)-dimenthyl malonate, (III), as a cream-coloured precipitate in good yield (66\%). The crude product was purified by flash column chromatography on silica gel, eluting with a light petroleum (313-333 K)-ether (19:1) mixture, and was then vapour recrystallized from hexane to give colourless needle-like crystals of (III).

(I)

$\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}$

X-ray diffraction of (III) revealed the structure illustrated in Fig. 1. The stereochemistry was assigned by reference to $(-)$-menthol. It was immediately evident that this molecule was not C_{2} symmetric in its solid phase, due to the nonequivalence of the carbonyl groups, $\mathrm{C} 1=\mathrm{O} 4$ and $\mathrm{C} 3=\mathrm{O} 3$. By comparison, solution-phase NMR studies at room tempera-
ture are consistent with C_{2} symmetry. We ascribe the conformation of this molecule in the crystal state to packing effects. The overall unit cell is pseudo- C_{2}-symmetric and contains two identical malonate molecules, as shown in Fig. 2.

The molecule is certainly not an enol derivative, with a $\mathrm{C} 1-$ $\mathrm{C} 2-\mathrm{C} 3$ bond angle of $111.5(5)^{\circ}$ and not significantly different $\mathrm{C} 1-\mathrm{C} 2$ and $\mathrm{C} 2-\mathrm{C} 3$ bond lengths of 1.492 (7) and 1.497 (8) Å, respectively (Table 1). All the substituents on the cyclohexyl ring are in the expected equatorial positions.

The most striking structural feature is the relative conformation of both carbonyl groups, $\mathrm{C} 1=\mathrm{O} 4$ and $\mathrm{C} 3=\mathrm{O} 3$. They are clearly twisted away from each other, as shown by the torsion angles of $138.3(6)^{\circ}$ for $\mathrm{O} 4-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 3$ and $102.6(6)^{\circ}$ for $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 3$. This is presumably due to a combination of hyperconjugation effects at $\mathrm{C} 2-\mathrm{H}$ with both

Figure 1
A view of the molecule of (III) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 2
A packing diagram for (III), viewed along the b axis.
carbonyl groups and a minimization of their relative dipole moments. This can also be seen in a related twist involving the other O atom in the ester motif, as shown by the torsion angles of $-42.5(6)^{\circ}$ for $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ and $-73.4(6)^{\circ}$ for $\mathrm{C} 1-$ $\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 2$. In contrast, both the ester groups strive for planarity $\left[-9.5(7)^{\circ}\right.$ for $\mathrm{C} 4-\mathrm{O} 2-\mathrm{C} 3-\mathrm{O} 3$ and $-0.8(8)^{\circ}$ for $\mathrm{C} 14-\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 4]$ through anomeric assistance (Table 1).

This type of antiparallel alignment has been reported in the structural arrangement of diimidazolines (Brennan \& McKee, 1999), diones (Klein et al., 1999) and related malonic acid derivatives (Kalsbeek, 1992). The effect of the non-equivalence of the menthyl groups is more interesting and can be seen more clearly by the non-equivalence of the ester groups. The $\mathrm{C} 14-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$ torsion angle of the ester group is planar $\left[-180.0(4)^{\circ}\right.$], whereas the related $\mathrm{C} 4-\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 2$ ester grouping certainly has a slight twist [166.6 (4) ${ }^{\circ}$] (Table 1). This is more than likely due to a combination of crystalpacking effects and the presence of a local pseudo-twofold axis (Table 2 and Fig. 2). This layer sequence is positioned in an $A B A B$ system, with layer B oriented antiparallel to layer A.

Experimental

Malonyl dichloride ($5.0 \mathrm{~g}, 3.45 \mathrm{ml}, 35.5 \mathrm{mmol}$) was slowly added to a stirred solution of triethylamine ($7.1 \mathrm{~g}, 9.90 \mathrm{ml}, 70.9 \mathrm{mmol}$) and (-)-menthol ($11.1 \mathrm{~g}, 70.9 \mathrm{mmol}$) in dichloromethane (100 ml), and the resulting solution was stirred for 1 h . The reaction was quenched slowly with water $(30 \mathrm{ml})$ and the organic layer was extracted with diethyl ether ($3 \times 50 \mathrm{ml}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel, eluting with light petroleum (313-333 K)ether (19:1) to give the title compound, (III) ($9.0 \mathrm{~g}, 66 \%$), as a lightcream solid. This solid was recrystallized using hexane to give colourless needle crystals (m.p. 327-328 K). Spectroscopic analysis: R_{F} [light petroleum (313-333 K)-ether (9:1)] 0.75; IR ($v_{\text {max }}$, film, cm^{-1}): 1725 (CO); $[\alpha]_{D}-83.7$ (c 2.7 in acetone); ${ }^{1} \mathrm{H}$ NMR (250 MHz , $\mathrm{CDCl}_{3}, \delta$, p.p.m.): $4.8(2 \mathrm{H}, t d, J=10.8$ and $4.4 \mathrm{~Hz}, \mathrm{CHO}), 3.36(2 \mathrm{H}, s$, $\left.\mathrm{CH}_{2} \mathrm{CO}\right), 2.15-0.85\left(18 \mathrm{H}, m, 6 \times \mathrm{CH}_{2}\right.$ and $\left.6 \times \mathrm{CH}\right), 1.1-0.95(6 \mathrm{H}, m$, $\left.2 \times \mathrm{CH}_{3}\right), 0.85\left(3 \mathrm{H}, d, J=7.0 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (67 MHz , CDCl_{3}, δ, p.p.m.): $166.2,75.5,46.9,42.4,40.7,34.2,31.4,26.1,23.4$, 22.0, 20.8, 16.3; analysis found: $M^{+} 381.3017 ; \mathrm{C}_{23} \mathrm{H}_{41} \mathrm{O}_{4}$ requires M^{+} 381.3005; MS $(\mathrm{m} / \mathrm{z}): 381(80 \%, M)$, $243\left(100, M-\mathrm{C}_{10} \mathrm{H}_{18}\right)$.

Crystal data

$\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{O}_{4}$
$M_{r}=380.55$
Monoclinic, $P 2_{1}$
$a=12.990$ (2) \AA
$b=6.092$ (3) \AA
$c=14.528$ (2) \AA
$\beta=98.55$ (2) ${ }^{\circ}$
$V=1136.9(6) \AA^{3}$
$Z=2$

Data collection

Enraf-Nonius CAD-4
diffractometer
Non-profiled $\omega / 2 \theta$ scans
2285 measured reflections
2194 independent reflections
1234 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.049$

[^0]Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{C} 1-\mathrm{C} 2$	$1.492(7)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.497(8)$
$\mathrm{C} 14-\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 4$	$-0.8(8)$	$\mathrm{C} 4-\mathrm{O} 2-\mathrm{C} 3-\mathrm{O} 3$	$-9.5(7)$
$\mathrm{C} 14-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$-180.0(4)$	$\mathrm{C} 4-\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 2$	$166.6(4)$
$\mathrm{O} 4-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$138.3(6)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 3$	$102.6(6)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-42.5(6)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 2$	$-73.4(6)$

Table 2
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C15-H15B $\cdots \mathrm{O}^{\mathrm{i}}$		0.99	2.44	$3.374(8)$
C20-H20 $\cdots \mathrm{O}^{\mathrm{ii}}$	1.00	2.54	$3.351(7)$	157

Symmetry codes: (i) $x, y-1, z$; (ii) $1-x, \frac{1}{2}+y, 2-z$.

Refinement

Refinement on F^{2}
$R(F)=0.058$
$w R\left(F^{2}\right)=0.163$
$S=0.93$
2194 reflections
251 parameters

> H atoms treated by a mixture of independent and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.096 P)^{2}\right]$
> where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.003$
> $\Delta \rho_{\max }=0.22 \mathrm{e}^{-3}$
> $\Delta \rho_{\min }=-0.21 \mathrm{e}^{-3}$

H atoms were placed in geometrical positions, with $\mathrm{C}-\mathrm{H}=0.98-$ $1.0 \AA$. $U_{\text {iso }}$ values were refined for the H atoms on C 2 ; all other H atoms were treated as riding, with $U_{\text {iso }}(\mathrm{H})=1.2$ or $1.5 U_{\text {eq }}(\mathrm{C})$.

Data collection: CAD-4-PC Software (Enraf-Nonius, 1994); cell refinement: CAD-4-PC Software; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We are grateful to the Faculty of Natural Science at Queen Mary, University of London, the London University Central Research Fund, the Nuffield Foundation (NUF-NAF 99) and the Royal Society for their generous support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1538). Services for accessing these data are described at the back of the journal.

References

Adhikesavalu, D. \& Venkatesan, K. (1983). Acta Cryst. C39, 1044-1048. Brennan, C. J. \& McKee, V. (1999). Acta Cryst. C55, 1492-1494.
Enraf-Nonius (1994). CAD-4-PC Software. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Kalsbeek, N. (1992). Acta Cryst. C48, 878-883.
Kanters, J. A. \& Kroon, J. (1972). Acta Cryst. B28, 1345-1349.
Klein, O., Dix, I., Hopf, H. \& Jones, P. G. (1999). Acta Cryst. C55, 2078-2080. Lundgren, G. \& Aurivillius, B. (1964). Acta Chem. Scand. 18, 1642-1652.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

[^0]: $D_{x}=1.112 \mathrm{Mg} \mathrm{m}^{-3}$
 Mo $K \alpha$ radiation
 Cell parameters from 25 reflections
 $\theta=8.6-13.4^{\circ}$
 $\mu=0.07 \mathrm{~mm}^{-1}$
 $T=180$ (2) K
 Needle, colourless
 $0.4 \times 0.2 \times 0.2 \mathrm{~mm}$
 $\theta_{\text {max }}=25^{\circ}$
 $h=-15 \rightarrow 15$
 $k=0 \rightarrow 7$
 $l=0 \rightarrow 17$
 2 standard reflections frequency: 60 min intensity decay: 7\%

